

UNIVERSITÄT MAINZ

JOHANNES GUTENBERG

Emergent Algorithmic Intelligence

This work has been supported by the Carl-Zeiss-Stiftung through grants "Big Data in Atmospheric Physics" and "Emergent Algorithmic Intelligence".

MOTIVATION

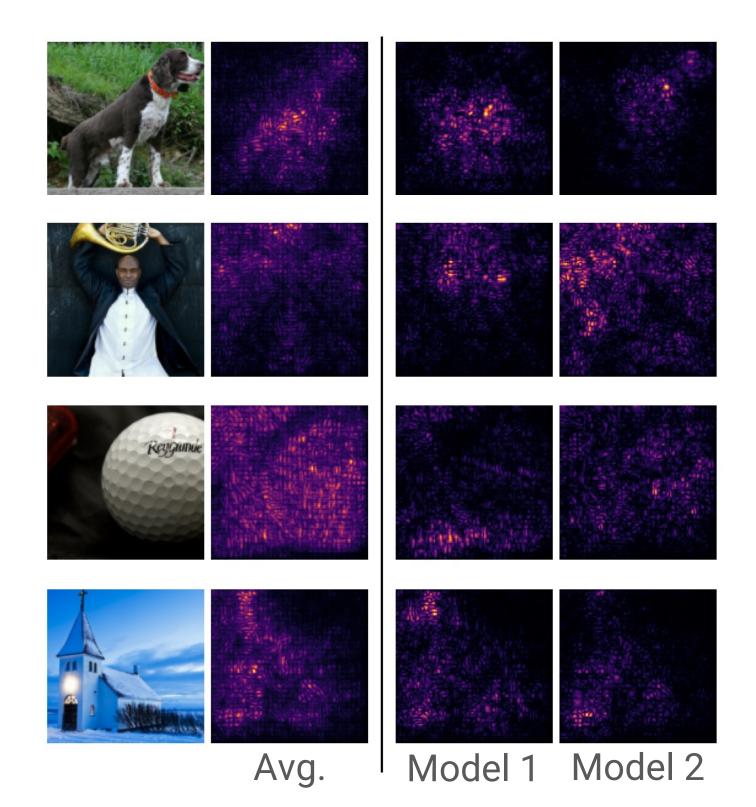
- Visualizing network decisions with different saliency methods
- Understand data by using classifier as a tool

CONTRIBUTIONS

- Initialization and training of a deep network can have strong influence on saliency maps
- Noisy artefacts can be removed by marginalization

ANALYSIS OF INPUT GRADIENTS

- Logit-by-image gradients
- Mean over 50 models vs. 2 handpicked models



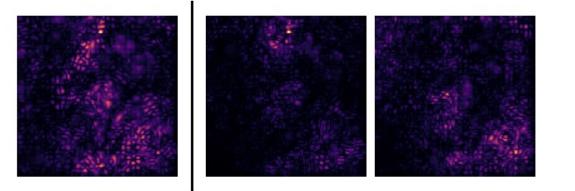
Initialization Noise in Image Gradients and Saliency Maps

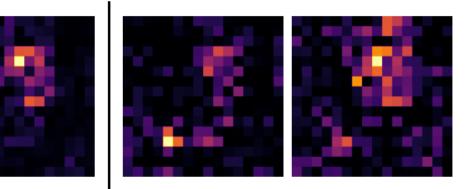
Ann-Christin Woerl, Jan Disselhoff, Michael Wand

Johannes Gutenberg University Mainz

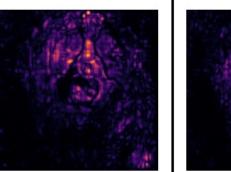
SALIENCY MAP COMPARISON

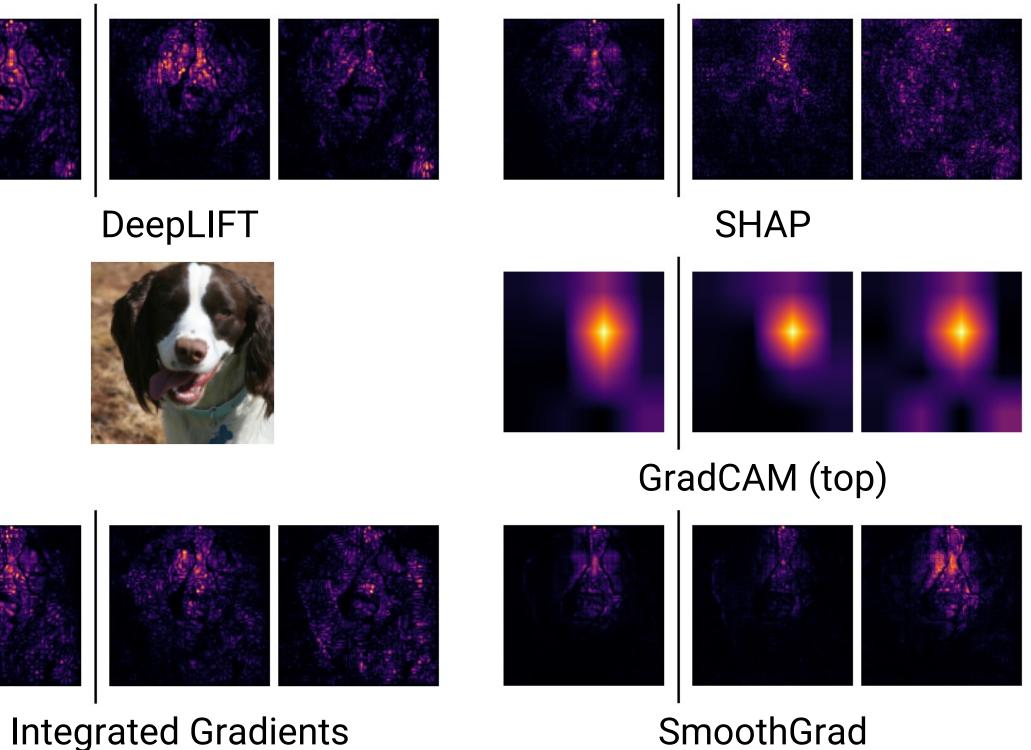
- First column: mean over 30 differently initialized models
- Column 2-3: single model with random initialization



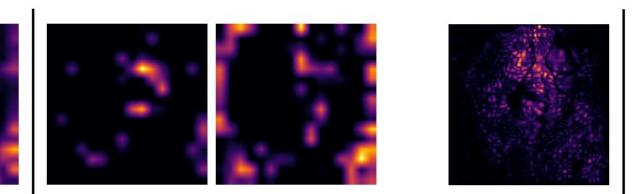


LIME





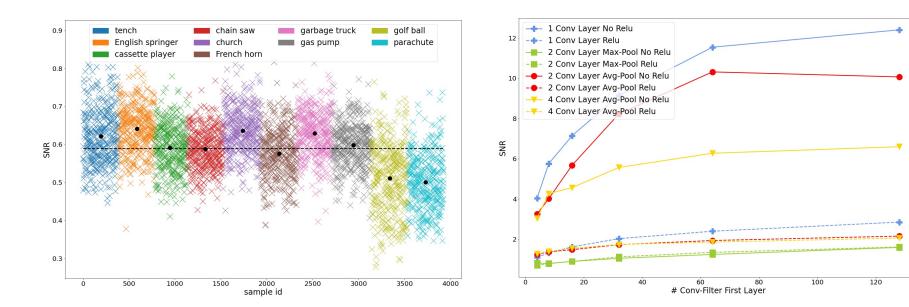
DeepLIFT

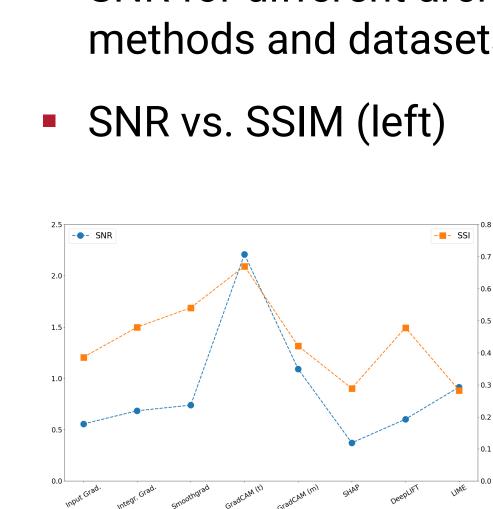


GradCAM (interm.)

SNR ANALYSIS

- SNR varies for different classes (left)
- Impact of architectural parameter on SNR (right)

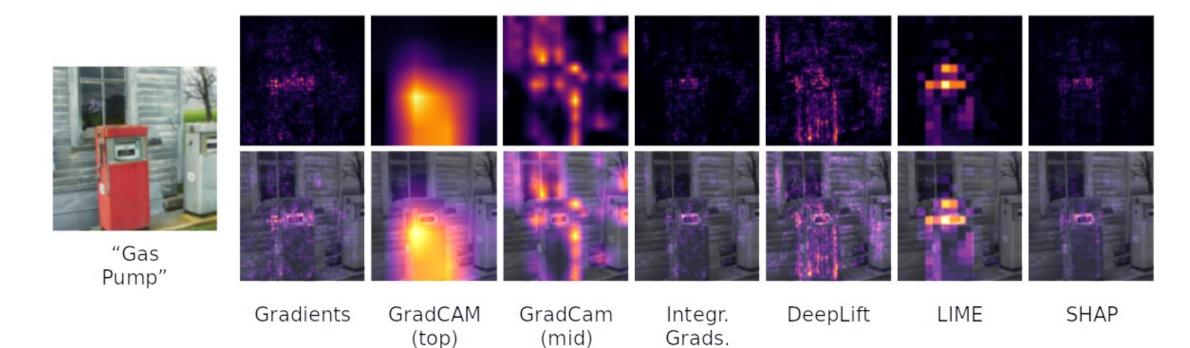




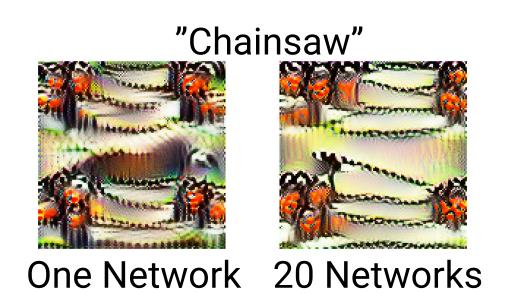
VISUAL COMPARISON

SNR for different architectures, saliency methods and datasets (right)

VGG19	ResNet18	ResNet101
0.436	0.555	0.435
0.612	0.742	0.744
0.627	0.789	0.878
0.816	1.593	1.373
0.612	1.112	0.680
0.252	0.365	0.308
0.453	0.628	0.554
0.609	0.772	0.826
(a) CIFAR	10	
VGG19	ResNet18	ResNet101
VGG19 0.585	ResNet18 0.589	ResNet101 0.444
		ResNet101 0.444 0.577
0.585	0.589	0.444
0.585 0.725	0.589 0.695	0.444 0.577
0.585 0.725 0.724	0.589 0.695 0.681	0.444 0.577 0.470
0.585 0.725 0.724 1.370	0.589 0.695 0.681 2.363	0.444 0.577 0.470 3.171
0.585 0.725 0.724 1.370 0.748	0.589 0.695 0.681 2.363 1.171	0.444 0.577 0.470 3.171 1.253
	0.436 0.612 0.627 0.816 0.612 0.252 0.453 0.609	0.4360.5550.6120.7420.6270.7890.8161.5930.6121.1120.2520.3650.4530.628



ENSEMBLE DEEP DREAM



CONCLUSION

- Substantial initialization noise
- Marginalization can remove it
- Attribution results are at least incomplete

Adapt "inceptionism" approach to use gradients from an ensemble of 20 networks

Results appear to show more complete features

Marginalized Saliency

One Network 20 Networks

Explaining data by attribution

Contact: awoerl@uni-mainz.de

Project Page:

